Climate change implications for water resources planning in transboundary water systems

Marc Jeuland (UNC-Chapel Hill) Dale Whittington October 2008

Brief Introduction / Justification

Methodology – A Simulation-Based Framework

Application – Blue Nile Infrastructure Planning

Justification

"<u>Vulnerabilities</u> to climate are strongly correlated with climate variability, in particular precipitation variability ... are largest in semi-arid and arid low-income countries, where precipitation and streamflow are concentrated over a few months, and where year-to-year variations are high."

- IPCC, 2007

Justification (Cont.)

- Traditional framework for water resources project appraisal relies on sophisticated hydrological modeling, followed by <u>limited</u> sensitivity analysis of economic (production and consumption) factors
- There is no existing framework for integrated evaluation of both economic and physical uncertainties in planning applications
- This research aims to develop such a framework, and apply it to a real planning problem
- This is useful for thinking about investments in the context of vulnerability and adaptation

Methodology

Two levels of simulation

- Hydrological (routing model with climate-dependent synthetic inflows)
- Economic (Monte Carlo simulation)

Inclusion of linkages with climate factors

- Net evaporation
- Changes in hydrological routing
- Increased crop water requirements
- Changed value of hydrological outputs (hydro, irrigation water, etc.)
- Value of net carbon offsets

Methodology – Economic Costs & Benefits

Benefits

Irrigation water demand at dam site

Municipal and industrial water demand

Hydropower generation

Downstream hydropower and water supply (regularization)

Flood control

Decrease in impacts of droughts

Creation of fishery in reservoir

Recreational benefits around reservoir

Carbon offsets

Sediment control

Navigation

Costs

Capital investment (dam, energy transmission infrastructure, land, etc.)

Operation and maintenance

Opportunity cost of land

Reduced water downstream for irrigation, municipal, industrial, hydropower

Resettlement and rehabilitation

Catastrophic risk

Lost river fisheries

Lost river recreation

Carbon emissions

Ecological costs

Public health costs

Methodology – The Framework

Application - Map

Area of interest:

3-4 Potential sites for large reservoirs

Used A2 ensemble mean projections (from TAR)

Results – The Effect of the Linkages & Adaptation

Key: R = Runoff only; NE = Net Evaporation;
 SR = Switching White Nile Hydrology; CWR = Crop Water Requirement;
 VHP = Time-Increasing Value of Hydropower; O = Monetized Offsets

Results – Sensitivity to Inflow Variation & Vulnerability

Results – Sensitivity to Economic Parameters

...And More on Adaptation and Vulnerability

Thanks for your attention!

Acknowledgements:

ENTRO (Addis Ababa, Ethiopia)
My PhD Dissertation Committee at UNC – Chapel Hill
The World Bank
For Climate Projections: Declan Conway, Alyssa
McCluskey, Eman Sayed, Ken Strzepek